随机变量的分布.md

常见概率分布总结:

分布名称记号分布律或概率密度函数数学期望方差
两点分布$$X \sim (0-1)$$$$P(X = x) = p^{k}q^{1-k}$$
$$x \in {0,1}, 0 \lt p \lt 1, q = 1-p$$
$$p$$$$pq$$
二项分布$$X \sim B(n, p)$$$$P(X = k) = C_n^kp^kq^{n-k}$$
$$k \in {0, 1, …, n}, 0 \lt p \lt 1, q = 1-p$$
$$np$$$$npq$$
泊松分布$$X \sim P(\lambda)$$$${\displaystyle P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}, k \in {1,2,…}, \lambda > 0}$$$$\lambda$$$$\lambda$$
均匀分布$$X \sim U[a,b]$$$$\displaystyle f(x) = \begin{cases}\displaystyle \frac{1}{a-b} &, a \le x \le b \ 0 &, others \end{cases}$$$$\displaystyle \frac{a+b}{2}$$$$\displaystyle \frac{(b-a)^2}{12}$$
指数分布$$X \sim E(\lambda)$$$$\displaystyle f(x) = \begin{cases} \lambda e^{-\lambda x} &, x > 0 \ 0 &, x \le 0 \end{cases}$$$$\displaystyle \frac{1}{\lambda}$$$$\displaystyle \frac{1}{\lambda^2}$$
正态分布$$X \sim N(\mu, \sigma^2)$$$$\displaystyle f(x) = \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x - \mu)^2}{2 \sigma^2}}, \sigma > 0$$$$\mu $$$$\sigma^2$$