Block Cipher

Overview

property:

  • Diffusion: any bits from the input message should affect whole cipher text.
  • Confusion: with different key, the cipher message should be completely different.

块加密可以用以下一个函数表示:$$C = E_k(x) = f(x, k), x,k,C \in \mathbb{F}_2^{(n)}$$

Requirements of f:

  • Nonelinearity: a minimum distance between f and all the linear, affine functions (confusion). Resist linear cryptanalysis.
  • Strict Avalanche Criterion(SAC): One bit change, resulting in significant changes (diffusion). Resist differential cryptanalysis.

Structure of block ciphers:

  1. Feistel structure, which is an NLFSR (nonlinear feedback shift register) with input.

  2. Substitute permutation network (SPN) structure

Data encryption standard (DES)

DES: Data Encryption Standard, NIST, 1976.

Python code: github:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#-*- coding: utf8 -*-

#Initial permut matrix for the datas
PI = [58, 50, 42, 34, 26, 18, 10, 2,
      60, 52, 44, 36, 28, 20, 12, 4,
      62, 54, 46, 38, 30, 22, 14, 6,
      64, 56, 48, 40, 32, 24, 16, 8,
      57, 49, 41, 33, 25, 17, 9, 1,
      59, 51, 43, 35, 27, 19, 11, 3,
      61, 53, 45, 37, 29, 21, 13, 5,
      63, 55, 47, 39, 31, 23, 15, 7]

#Initial permut made on the key
CP_1 = [57, 49, 41, 33, 25, 17, 9,
        1, 58, 50, 42, 34, 26, 18,
        10, 2, 59, 51, 43, 35, 27,
        19, 11, 3, 60, 52, 44, 36,
        63, 55, 47, 39, 31, 23, 15,
        7, 62, 54, 46, 38, 30, 22,
        14, 6, 61, 53, 45, 37, 29,
        21, 13, 5, 28, 20, 12, 4]

#Permut applied on shifted key to get Ki+1
CP_2 = [14, 17, 11, 24, 1, 5, 3, 28,
        15, 6, 21, 10, 23, 19, 12, 4,
        26, 8, 16, 7, 27, 20, 13, 2,
        41, 52, 31, 37, 47, 55, 30, 40,
        51, 45, 33, 48, 44, 49, 39, 56,
        34, 53, 46, 42, 50, 36, 29, 32]

#Expand matrix to get a 48bits matrix of datas to apply the xor with Ki
E = [32, 1, 2, 3, 4, 5,
     4, 5, 6, 7, 8, 9,
     8, 9, 10, 11, 12, 13,
     12, 13, 14, 15, 16, 17,
     16, 17, 18, 19, 20, 21,
     20, 21, 22, 23, 24, 25,
     24, 25, 26, 27, 28, 29,
     28, 29, 30, 31, 32, 1]

#SBOX
S_BOX = [
         
[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
 [0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
 [4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
 [15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
],

[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
 [3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
 [0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
 [13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
],

[[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
 [13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
 [13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
 [1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
],

[[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
 [13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
 [10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
 [3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
],  

[[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
 [14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
 [4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
 [11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
], 

[[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
 [10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
 [9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
 [4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
], 

[[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
 [13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
 [1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
 [6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
],
   
[[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
 [1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
 [7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
 [2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
]
]

#Permut made after each SBox substitution for each round
P = [16, 7, 20, 21, 29, 12, 28, 17,
     1, 15, 23, 26, 5, 18, 31, 10,
     2, 8, 24, 14, 32, 27, 3, 9,
     19, 13, 30, 6, 22, 11, 4, 25]

#Final permut for datas after the 16 rounds
PI_1 = [40, 8, 48, 16, 56, 24, 64, 32,
        39, 7, 47, 15, 55, 23, 63, 31,
        38, 6, 46, 14, 54, 22, 62, 30,
        37, 5, 45, 13, 53, 21, 61, 29,
        36, 4, 44, 12, 52, 20, 60, 28,
        35, 3, 43, 11, 51, 19, 59, 27,
        34, 2, 42, 10, 50, 18, 58, 26,
        33, 1, 41, 9, 49, 17, 57, 25]

#Matrix that determine the shift for each round of keys
SHIFT = [1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1]

def string_to_bit_array(text):#Convert a string into a list of bits
    array = list()
    for char in text:
        binval = binvalue(char, 8)#Get the char value on one byte
        array.extend([int(x) for x in list(binval)]) #Add the bits to the final list
    return array

def bit_array_to_string(array): #Recreate the string from the bit array
    res = ''.join([chr(int(y,2)) for y in [''.join([str(x) for x in _bytes]) for _bytes in  nsplit(array,8)]])   
    return res

def binvalue(val, bitsize): #Return the binary value as a string of the given size 
    binval = bin(val)[2:] if isinstance(val, int) else bin(ord(val))[2:]
    if len(binval) > bitsize:
        raise "binary value larger than the expected size"
    while len(binval) < bitsize:
        binval = "0"+binval #Add as many 0 as needed to get the wanted size
    return binval

def nsplit(s, n):#Split a list into sublists of size "n"
    return [s[k:k+n] for k in range(0, len(s), n)]

ENCRYPT=1
DECRYPT=0

class des():
    def __init__(self):
        self.password = None
        self.text = None
        self.keys = list()
        
    def run(self, key, text, action=ENCRYPT, padding=False):
        if len(key) < 8:
            raise "Key Should be 8 bytes long"
        elif len(key) > 8:
            key = key[:8] #If key size is above 8bytes, cut to be 8bytes long
        
        self.password = key
        self.text = text
        
        if padding and action==ENCRYPT:
            self.addPadding()
        elif len(self.text) % 8 != 0:#If not padding specified data size must be multiple of 8 bytes
            raise "Data size should be multiple of 8"
        
        self.generatekeys() #Generate all the keys
        text_blocks = nsplit(self.text, 8) #Split the text in blocks of 8 bytes so 64 bits
        result = list()
        for block in text_blocks:#Loop over all the blocks of data
            block = string_to_bit_array(block)#Convert the block in bit array
            block = self.permut(block,PI)#Apply the initial permutation
            g, d = nsplit(block, 32) #g(LEFT), d(RIGHT)
            tmp = None
            for i in range(16): #Do the 16 rounds
                d_e = self.expand(d, E) #Expand d to match Ki size (48bits)
                if action == ENCRYPT:
                    tmp = self.xor(self.keys[i], d_e)#If encrypt use Ki
                else:
                    tmp = self.xor(self.keys[15-i], d_e)#If decrypt start by the last key
                tmp = self.substitute(tmp) #Method that will apply the SBOXes
                tmp = self.permut(tmp, P)
                tmp = self.xor(g, tmp)
                g = d
                d = tmp
            result += self.permut(d+g, PI_1) #Do the last permut and append the result to result
        final_res = bit_array_to_string(result)
        if padding and action==DECRYPT:
            return self.removePadding(final_res) #Remove the padding if decrypt and padding is true
        else:
            return final_res #Return the final string of data ciphered/deciphered
    
    def substitute(self, d_e):#Substitute bytes using SBOX
        subblocks = nsplit(d_e, 6)#Split bit array into sublist of 6 bits
        result = list()
        for i in range(len(subblocks)): #For all the sublists
            block = subblocks[i]
            row = int(str(block[0])+str(block[5]),2)#Get the row with the first and last bit
            column = int(''.join([str(x) for x in block[1:][:-1]]),2) #Column is the 2,3,4,5th bits
            val = S_BOX[i][row][column] #Take the value in the SBOX appropriated for the round (i)
            bin = binvalue(val, 4)#Convert the value to binary
            result += [int(x) for x in bin]#And append it to the resulting list
        return result
        
    def permut(self, block, table):#Permut the given block using the given table (so generic method)
        return [block[x-1] for x in table]
    
    def expand(self, block, table):#Do the exact same thing than permut but for more clarity has been renamed
        return [block[x-1] for x in table]
    
    def xor(self, t1, t2):#Apply a xor and return the resulting list
        return [x^y for x,y in zip(t1,t2)]
    
    def generatekeys(self):#Algorithm that generates all the keys
        self.keys = []
        key = string_to_bit_array(self.password)
        key = self.permut(key, CP_1) #Apply the initial permut on the key
        g, d = nsplit(key, 28) #Split it in to (g->LEFT),(d->RIGHT)
        for i in range(16):#Apply the 16 rounds
            g, d = self.shift(g, d, SHIFT[i]) #Apply the shift associated with the round (not always 1)
            tmp = g + d #Merge them
            self.keys.append(self.permut(tmp, CP_2)) #Apply the permut to get the Ki

    def shift(self, g, d, n): #Shift a list of the given value
        return g[n:] + g[:n], d[n:] + d[:n]
    
    def addPadding(self):#Add padding to the datas using PKCS5 spec.
        pad_len = 8 - (len(self.text) % 8)
        self.text += pad_len * chr(pad_len)
    
    def removePadding(self, data):#Remove the padding of the plain text (it assume there is padding)
        pad_len = ord(data[-1])
        return data[:-pad_len]
    
    def encrypt(self, key, text, padding=False):
        return self.run(key, text, ENCRYPT, padding)
    
    def decrypt(self, key, text, padding=False):
        return self.run(key, text, DECRYPT, padding)
    
if __name__ == '__main__':
    key = "secret_k"
    text= "Hello wo"
    d = des()
    r = d.encrypt(key,text)
    r2 = d.decrypt(key,r)
    print("Ciphered: %r" % r)
    print("Deciphered: ", r2)

Advanced Encryption Standard (AES)

AES: Advanced Encryption Standard

Python code github:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python


"""
    Copyright (C) 2012 Bo Zhu http://about.bozhu.me

    Permission is hereby granted, free of charge, to any person obtaining a
    copy of this software and associated documentation files (the "Software"),
    to deal in the Software without restriction, including without limitation
    the rights to use, copy, modify, merge, publish, distribute, sublicense,
    and/or sell copies of the Software, and to permit persons to whom the
    Software is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.
"""

Sbox = (
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16,
)

InvSbox = (
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D,
)


# learnt from http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c
xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)


Rcon = (
    0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
    0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A,
    0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A,
    0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39,
)


def text2matrix(text):
    matrix = []
    for i in range(16):
        byte = (text >> (8 * (15 - i))) & 0xFF
        if i % 4 == 0:
            matrix.append([byte])
        else:
            matrix[i / 4].append(byte)
    return matrix


def matrix2text(matrix):
    text = 0
    for i in range(4):
        for j in range(4):
            text |= (matrix[i][j] << (120 - 8 * (4 * i + j)))
    return text


class AES:
    def __init__(self, master_key):
        self.change_key(master_key)

    def change_key(self, master_key):
        self.round_keys = text2matrix(master_key)
        # print self.round_keys

        for i in range(4, 4 * 11):
            self.round_keys.append([])
            if i % 4 == 0:
                byte = self.round_keys[i - 4][0]        \
                     ^ Sbox[self.round_keys[i - 1][1]]  \
                     ^ Rcon[i / 4]
                self.round_keys[i].append(byte)

                for j in range(1, 4):
                    byte = self.round_keys[i - 4][j]    \
                         ^ Sbox[self.round_keys[i - 1][(j + 1) % 4]]
                    self.round_keys[i].append(byte)
            else:
                for j in range(4):
                    byte = self.round_keys[i - 4][j]    \
                         ^ self.round_keys[i - 1][j]
                    self.round_keys[i].append(byte)

        # print self.round_keys

    def encrypt(self, plaintext):
        self.plain_state = text2matrix(plaintext)

        self.__add_round_key(self.plain_state, self.round_keys[:4])

        for i in range(1, 10):
            self.__round_encrypt(self.plain_state, self.round_keys[4 * i : 4 * (i + 1)])

        self.__sub_bytes(self.plain_state)
        self.__shift_rows(self.plain_state)
        self.__add_round_key(self.plain_state, self.round_keys[40:])

        return matrix2text(self.plain_state)

    def decrypt(self, ciphertext):
        self.cipher_state = text2matrix(ciphertext)

        self.__add_round_key(self.cipher_state, self.round_keys[40:])
        self.__inv_shift_rows(self.cipher_state)
        self.__inv_sub_bytes(self.cipher_state)

        for i in range(9, 0, -1):
            self.__round_decrypt(self.cipher_state, self.round_keys[4 * i : 4 * (i + 1)])

        self.__add_round_key(self.cipher_state, self.round_keys[:4])

        return matrix2text(self.cipher_state)

    def __add_round_key(self, s, k):
        for i in range(4):
            for j in range(4):
                s[i][j] ^= k[i][j]


    def __round_encrypt(self, state_matrix, key_matrix):
        self.__sub_bytes(state_matrix)
        self.__shift_rows(state_matrix)
        self.__mix_columns(state_matrix)
        self.__add_round_key(state_matrix, key_matrix)


    def __round_decrypt(self, state_matrix, key_matrix):
        self.__add_round_key(state_matrix, key_matrix)
        self.__inv_mix_columns(state_matrix)
        self.__inv_shift_rows(state_matrix)
        self.__inv_sub_bytes(state_matrix)

    def __sub_bytes(self, s):
        for i in range(4):
            for j in range(4):
                s[i][j] = Sbox[s[i][j]]


    def __inv_sub_bytes(self, s):
        for i in range(4):
            for j in range(4):
                s[i][j] = InvSbox[s[i][j]]


    def __shift_rows(self, s):
        s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1]
        s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
        s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3]


    def __inv_shift_rows(self, s):
        s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1]
        s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
        s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3]

    def __mix_single_column(self, a):
        # please see Sec 4.1.2 in The Design of Rijndael
        t = a[0] ^ a[1] ^ a[2] ^ a[3]
        u = a[0]
        a[0] ^= t ^ xtime(a[0] ^ a[1])
        a[1] ^= t ^ xtime(a[1] ^ a[2])
        a[2] ^= t ^ xtime(a[2] ^ a[3])
        a[3] ^= t ^ xtime(a[3] ^ u)


    def __mix_columns(self, s):
        for i in range(4):
            self.__mix_single_column(s[i])


    def __inv_mix_columns(self, s):
        # see Sec 4.1.3 in The Design of Rijndael
        for i in range(4):
            u = xtime(xtime(s[i][0] ^ s[i][2]))
            v = xtime(xtime(s[i][1] ^ s[i][3]))
            s[i][0] ^= u
            s[i][1] ^= v
            s[i][2] ^= u
            s[i][3] ^= v

        self.__mix_columns(s)