1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
| #-*- coding: utf8 -*-
#Initial permut matrix for the datas
PI = [58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7]
#Initial permut made on the key
CP_1 = [57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4]
#Permut applied on shifted key to get Ki+1
CP_2 = [14, 17, 11, 24, 1, 5, 3, 28,
15, 6, 21, 10, 23, 19, 12, 4,
26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40,
51, 45, 33, 48, 44, 49, 39, 56,
34, 53, 46, 42, 50, 36, 29, 32]
#Expand matrix to get a 48bits matrix of datas to apply the xor with Ki
E = [32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1]
#SBOX
S_BOX = [
[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
],
[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
],
[[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
],
[[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
],
[[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
],
[[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
[9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
[4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
],
[[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
[1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
[6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
],
[[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
[1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
[7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
[2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
]
]
#Permut made after each SBox substitution for each round
P = [16, 7, 20, 21, 29, 12, 28, 17,
1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9,
19, 13, 30, 6, 22, 11, 4, 25]
#Final permut for datas after the 16 rounds
PI_1 = [40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25]
#Matrix that determine the shift for each round of keys
SHIFT = [1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1]
def string_to_bit_array(text):#Convert a string into a list of bits
array = list()
for char in text:
binval = binvalue(char, 8)#Get the char value on one byte
array.extend([int(x) for x in list(binval)]) #Add the bits to the final list
return array
def bit_array_to_string(array): #Recreate the string from the bit array
res = ''.join([chr(int(y,2)) for y in [''.join([str(x) for x in _bytes]) for _bytes in nsplit(array,8)]])
return res
def binvalue(val, bitsize): #Return the binary value as a string of the given size
binval = bin(val)[2:] if isinstance(val, int) else bin(ord(val))[2:]
if len(binval) > bitsize:
raise "binary value larger than the expected size"
while len(binval) < bitsize:
binval = "0"+binval #Add as many 0 as needed to get the wanted size
return binval
def nsplit(s, n):#Split a list into sublists of size "n"
return [s[k:k+n] for k in range(0, len(s), n)]
ENCRYPT=1
DECRYPT=0
class des():
def __init__(self):
self.password = None
self.text = None
self.keys = list()
def run(self, key, text, action=ENCRYPT, padding=False):
if len(key) < 8:
raise "Key Should be 8 bytes long"
elif len(key) > 8:
key = key[:8] #If key size is above 8bytes, cut to be 8bytes long
self.password = key
self.text = text
if padding and action==ENCRYPT:
self.addPadding()
elif len(self.text) % 8 != 0:#If not padding specified data size must be multiple of 8 bytes
raise "Data size should be multiple of 8"
self.generatekeys() #Generate all the keys
text_blocks = nsplit(self.text, 8) #Split the text in blocks of 8 bytes so 64 bits
result = list()
for block in text_blocks:#Loop over all the blocks of data
block = string_to_bit_array(block)#Convert the block in bit array
block = self.permut(block,PI)#Apply the initial permutation
g, d = nsplit(block, 32) #g(LEFT), d(RIGHT)
tmp = None
for i in range(16): #Do the 16 rounds
d_e = self.expand(d, E) #Expand d to match Ki size (48bits)
if action == ENCRYPT:
tmp = self.xor(self.keys[i], d_e)#If encrypt use Ki
else:
tmp = self.xor(self.keys[15-i], d_e)#If decrypt start by the last key
tmp = self.substitute(tmp) #Method that will apply the SBOXes
tmp = self.permut(tmp, P)
tmp = self.xor(g, tmp)
g = d
d = tmp
result += self.permut(d+g, PI_1) #Do the last permut and append the result to result
final_res = bit_array_to_string(result)
if padding and action==DECRYPT:
return self.removePadding(final_res) #Remove the padding if decrypt and padding is true
else:
return final_res #Return the final string of data ciphered/deciphered
def substitute(self, d_e):#Substitute bytes using SBOX
subblocks = nsplit(d_e, 6)#Split bit array into sublist of 6 bits
result = list()
for i in range(len(subblocks)): #For all the sublists
block = subblocks[i]
row = int(str(block[0])+str(block[5]),2)#Get the row with the first and last bit
column = int(''.join([str(x) for x in block[1:][:-1]]),2) #Column is the 2,3,4,5th bits
val = S_BOX[i][row][column] #Take the value in the SBOX appropriated for the round (i)
bin = binvalue(val, 4)#Convert the value to binary
result += [int(x) for x in bin]#And append it to the resulting list
return result
def permut(self, block, table):#Permut the given block using the given table (so generic method)
return [block[x-1] for x in table]
def expand(self, block, table):#Do the exact same thing than permut but for more clarity has been renamed
return [block[x-1] for x in table]
def xor(self, t1, t2):#Apply a xor and return the resulting list
return [x^y for x,y in zip(t1,t2)]
def generatekeys(self):#Algorithm that generates all the keys
self.keys = []
key = string_to_bit_array(self.password)
key = self.permut(key, CP_1) #Apply the initial permut on the key
g, d = nsplit(key, 28) #Split it in to (g->LEFT),(d->RIGHT)
for i in range(16):#Apply the 16 rounds
g, d = self.shift(g, d, SHIFT[i]) #Apply the shift associated with the round (not always 1)
tmp = g + d #Merge them
self.keys.append(self.permut(tmp, CP_2)) #Apply the permut to get the Ki
def shift(self, g, d, n): #Shift a list of the given value
return g[n:] + g[:n], d[n:] + d[:n]
def addPadding(self):#Add padding to the datas using PKCS5 spec.
pad_len = 8 - (len(self.text) % 8)
self.text += pad_len * chr(pad_len)
def removePadding(self, data):#Remove the padding of the plain text (it assume there is padding)
pad_len = ord(data[-1])
return data[:-pad_len]
def encrypt(self, key, text, padding=False):
return self.run(key, text, ENCRYPT, padding)
def decrypt(self, key, text, padding=False):
return self.run(key, text, DECRYPT, padding)
if __name__ == '__main__':
key = "secret_k"
text= "Hello wo"
d = des()
r = d.encrypt(key,text)
r2 = d.decrypt(key,r)
print("Ciphered: %r" % r)
print("Deciphered: ", r2)
|